
Optimizing Recognition Representation for

Use in Anomaly Detection

Jialin Yu1

MSc Computer Graphics, Vision and Imaging

Supervisor: Lewis D. Griffin

Submission date: 05 September 2019

1Disclaimer: This report is submitted as part requirement for the MSc degree in ‘Computer
Graphics, Vision & Imaging’ at University College London. It is substantially the result of my
own work except where explicitly indicated in the text. The report may be freely copied and
distributed provided the source is explicitly acknowledged

Abstract

Anomaly detection (AD) is a task of finding instances of nonconformity from an analyzed

data set. Transfer learning, which refers to applying model trained from a richer dataset

into a database with insufficient examples for cross-validation, has been suggested to con-

tribute to the issue of model underfitting in a smaller dataset. Based on previous work,

Griffin et al. [31] has postulated that performance of anomaly detection of the existing

transfer-learned networks can be improved by a different architecture with an optimized

recognition representation. Hence, the present study levelled at investigating the impact

of an optimized recognition representations on AD accuracies by introducing some Convo-

lutional Neural Network (CNN) architectures with varied sizes of final pooling layers.

With two different datasets, we trained several CNNs in different pooling layer sizes

and tested with two different anomaly detection tasks for transfer learning. We evaluated

and analyzed these results and compares them to a conventional detection method based

on a traditional statistical model. The results of our experiment showed that, with our

proposed optimization framework, anomaly detection performance of CNN scaled linearly

with the size of feature extraction layers. Additionally, we found that transfer learning in

anomaly detection task from a less varied domain to a more complicated one was infeasible

to achieve results comparable to the conventional method. From our provided overhauls of

data distribution, however, we noticed that our optimization architectures proved effective

in such an illed domain, as CNNs still managed to learn determinable features between

classes.

Code for this project can be reviewed in the following repository:

https://github.com/pleaseRedo/MSc-Project

1

Acknowledgements

I greatly thank my supervisor Dr.Lewis Griffin for giving me this golden opportunity to

do this fantastic project. I also sincerely appreciate his invaluable advice in conducting

experiments, designing network architecure and organizing the write-up of my report.

I would also like to thank my mom who gave my endless encouragement and care in

this stressful days for completion of my report.

Contents

1 Introduction 2

1.1 Anomaly detection . 2

1.1.1 Detection Methods Overview . 3

1.1.2 Output of Anomaly Detection . 4

1.2 Motivations . 4

1.3 Our Contributions . 6

1.4 Structure of the Report . 7

2 Background and related work 8

2.1 Backgournds for Anomaly Detection . 8

2.1.1 Taxonomy of Detection Approaches 8

2.2 Anomaly Detection over x-rayed imagery 11

2.2.1 Candidate Approaches to Anomaly detection 11

2.2.2 Review of the State-of-arts . 12

2.3 Artificial Neural Network . 14

2.3.1 Overview . 14

2.4 Basic Neural Network . 15

2.4.1 Background . 15

2.4.2 Forward Propagation . 17

1

2.4.3 Loss Functions . 19

2.4.4 Backward Propagation . 21

2.5 Convolutional Neural Network . 23

2.5.1 Overview . 23

2.5.2 Convolutional Layer . 23

2.5.3 Convolutional Layer Frameworks 25

3 Experiments 29

3.1 Dataset . 29

3.2 Implementation . 30

3.2.1 Proposed CNN Architecture . 30

3.3 Anomaly Detection Pipeline . 31

3.3.1 Summary . 33

4 Results and Analysis 36

4.1 Determing Epsilon . 36

4.2 SVHN Experiment . 37

4.2.1 Detecting Anomalies . 39

4.3 MNIST Experiment . 41

4.4 Qualitative Inspection of Data Distributions 43

5 Conclusions and Suggestions for Future Work 50

5.1 Report Summary . 50

5.2 Suggestions for Further Work . 52

A Supplementing Results 67

2

List of Figures

1.1 Outliers visualization [9] . 2

2.1 Proposed CNN architecture [31] . 13

2.2 Visualization of a simple MLP architecture. Figure from [30, p. 6] 17

2.3 Signal flows for a node j in a MLP (with a Loss Function L(aj, y) at the

end, it is equivalent to a logistic regression) 18

2.4 Schematic of backward propagation at layer j 22

2.5 [3× 3] filter example. Figure from [21] . 24

2.6 A convolution example with filter size [3 × 3] and input feature map size

[5× 5]. Figure from [21] . 24

2.7 Two types of pooling layer example. Figure from [72] 25

2.8 CNN architecture for hand-written digit classification data set. Figure from

[68] . 26

3.1 Our proposed CNN architecture. Input to this architecture is a [28 × 28]

image example and it outputs a [1× 10] “one-hot” encoded lable. This net-

work consists six Conv layers colored in champagne, without padding, the

input feature map will keep downsampling which results in a 1024 parame-

ters flattened layer. A fully-connected layer(in light violet) is added to map

output from the flattened layer. 30

3

3.2 Schematics of our experiment. 35

4.1 Results from one of our epsilon test. 37

4.2 CNN Validation accuracy from one of our trained network pool. 38

4.3 CNN Testing accuracy from four of our trained network pool. According to

Validation result, accuracy in size 2 is trivial, thus we further zoomed our

axes into the range [0.9, 1.0] . 38

4.4 Splits of data representations . 39

4.5 Averaged AD AUC for 10 anomaly classes for 14 networks 40

4.6 Overall AD AUC for each network . 41

4.7 CNN testing accuracy on MNIST dataset for three runs. 42

4.8 Averaged AD AUC for 10 anomaly classes for 14 networks detecting anomaly

digits from SVHN dataset. 42

4.9 Overall AD AUC for each network when detecting anomalies from SVHN

dataset. 43

4.10 Raw pixel data visualization for our datasets. 44

4.11 3-D data visualization for SVHN representations learned by CNNs trained

on SVHN . 45

4.12 3-D data visualization for MNIST representations learned by CNNs trained

on SVHN . 46

4.13 Two-class t-SNE visualization for anomaly classes 1, representation learned

by a CNN with size of 8 pooling layer. 47

4.14 Two-class t-SNE visualization for anomaly classes: 1 2 9 49

A.1 Impact of tunning epsilons for baseline . 67

A.2 Results of baseline for SVHN AD over 10 runs 68

A.3 Representation distribution for SVHN from CNNs trained on MNIST. . . . 68

4

A.4 Visualization of how CNNs learn representations. Dataset: MNIST 70

A.5 PCA plots for anomaly digit: 1 9 and 2. 71

5

List of Tables

2.1 Proposed CNN architecure . 28

6

Acronyms

AD Anomaly Detection.

ANN Artificial Neural Network.

AUC Area Under the Curve.

BP Back Propagation.

CNN Convolutional Neural Network.

Conv layer Convolutional Layer.

DL Deep Learning.

GPU Graphical Processing Unit.

ML Machine Learning.

MLP Multilayer Perceptron.

NN Neural Network.

ReLU Rectified Linear Unit.

ROC Receiver Operating Characteristic Curve.

SVHN Street View House Number.

1

Chapter 1

Introduction

1.1 Anomaly detection

Anomaly detection(AD) is a task of identifying instances of nonconformity from an analyzed

data set.

Figure 1.1: Outliers visualization [9]

2

Such instances are also referred to as anomalies or sometimes, outliers. As can be seen

on Figure 1.1, O1,O2,O3 are three outliers as they are clearly outside the clustersN1 andN2.

Early research in anomaly detection tends to use terms anomaly and outlier interchange-

ably [12]. In recent works, especially in the field of computer vision, researchers seems to

distinguish them where outlier detection is a part of procedure in anomaly detection [31].

Where anomaly detection is a two-step problem: data representation and outlier detection.

As our project focused on representation optimization, we would, therefore, discriminate

anomaly and outlier detection, where detecting outliers is a sub-task in anomaly detection.

1.1.1 Detection Methods Overview

There are many extant anomaly reviews over different domains detailing AD’s comprehen-

sive applications. From 2017 onwards, In [46], a survey of detection methods in cyber-

intrusion is presented and evaluated which is an updated reviewing work published in [67]

2007. Adewumi and Akinyelu [1] gives an extensive review of AD in fraud detection. A

broad study of AD techniques in medical field [51] is presented by Litjens et al. . Internet

of Things and big-data anomaly detection has been reviewed by Mohammadi et al.[64]. An

overview of AD in sensor networks is introduced by Ball et al. [5]. The state-of-art video

surveillance anomaly detection with deep learning methods overview is brought by Kiran

et al. [42].

Although in different domains, among these recent reviews, all of them mentioned the

techniques of adopting deep learning in anomaly detection procedure. In [9], authors named

such type of detection methods Deep Anomaly Detection(DAD).

3

1.1.2 Output of Anomaly Detection

One important aspect in anomaly detection in how detected anomalies are measured.

Typically, those measurements can be categorized into two:

Anomaly Scores

For each data instances, anomaly score measures their degree of outlierness. The scoring

techniques uses domain-specific threshold, also known as, decision score. One common use

for scores is to rank anomalies based on those threshold proposed by data analysts, this

class of output receives more attention in recent studies[78, 31]. The term score itself is a

quite abstract concept and it is defined differently according to authors. In SVDD[78] and

[31], scores are distance from points to centroids of learned model. The score could also

be a reconstruction error in [32].

Anomaly Labels

Instead of giving scores, techniques in this category label each instance as either normal or

anomalous. Comparing to scoring methods, label-based approach relinquishes the benefits

of finding most relevant anomaly in a direct way.

1.2 Motivations

We have seen wide applications for anomaly detection in previous sections. In security

imaging domain, there is a sub-branch that aims to find anomalous item over series of

x-rayed security images.

X-ray imaging is mainly used for inspection. With those images, a security personnel

can detect potential risks like Improvised Explosive Devices(IED) [99] and firearms [96]

without the need of opening cargo or luggages.

4

The x-ray security operations can be broken down into four modes based on scenario:

Threat Detection(TD), Semantic Analysis(SA), Manifest Verification(MA) and Anomaly

Detection(AD). Since our work mostly concentrate on AD, further discussion on other

three scenarios will be omitted.

Through our research, these operations are performed parallel by inspectors. For hu-

man, Such inspection task would be costly, taxing,time-consuming and error-prone [102].

These concerns necessitate an automation system which is capable of all these inspection

tasks while preserving a consistent high-speed performance as well as reducing chance of

corruption [75].

Although performed in parallel, only the operation TD receives most research [31] focus

while achieving human-comparable results [45]. The current research stage [31] for AD are

mostly exploited in satellite [73, 58, 91], less commonly in video surveillance [57] and

seldomly in x-ray image [3].

To the extent of our knowledge, the first study related to specific AD on x-ray imagery

is in 2013 [103], where Zheng and Elmaghraby proposed a detection method based on

border-crossing vehicles x-ray scans. Although in x-ray imaging domain, the work seems

developed a TD method to detect anomalies. By definition of AD, methods in [103] is not

a well-defined AD, authors just happen to use the terminology ‘anomaly’ as an alias for

‘threat’ which is termed in our context of definition as discussed earlier. So Griffin et al.

[31] may be credited to be the first team that conduct research about x-ray imaging AD

and still remain active nowadays. The success use of transfer training domain in CNNs to

accomplish anomaly detection in [31] have paved a way for us to pursuing their studies.

The CNN Architecture used by them only serves as a tool for feature extraction without

any research assigned to it. This network structure is designed for image recognition

task rather, detecting anomalies. Therefore, most architectural design such as the final

pooling layer can be optimized further to become a AD-specific network. Based on our

5

deep learning’s knowledge, the size of pooling layer from the CNN used by [31], to be

specific 1024, might not be an ideal value for anomaly detection as activations from this

layer is producing very high-dimensional representations. We hypothesized that a high-

dimensional representation may express good multi-class classification results but not in a

two-class classification task such as AD.

Our project will seek to find empirical evidence to justify our initial hypothesis through

some experiments conducted on various pooling size CNNs. Due to the fact that Network

from [31] is overly large, training network with such scale might be tedious and very time-

consuming. We therefore, decide to organize our study into similar structured CNN with

shallower layer and less complicated image datasets.

1.3 Our Contributions

The objective of our project is to explore the potential of an optimized CNN architecture

suggested by [31] for anomaly detection. concretely we will design two transfer learned

anomaly detection tests to examine how well our networks performed.

The contributions of our research can be listed by two points:

1. We proposed an CNN architecture to extract an optimized representations.

2. We implemented and tested our architecture in the context of transfer learning.

Specifically, we conducted extensive anomaly detection experiments on our network

to determine the relationship between AD accuracy and size of representation learn

layer.

3. We explored the precondition of transfer learning when applying to anomaly detection

tasks.

6

1.4 Structure of the Report

In this section we provide an introductory background and motivations for the project. We

provided an overview of anomaly detection and some related terminology. We also include

a short section of how we quantified anomalous data. We then described the motivations

and initial hypothesis of our project.

Chapter 2 provides preliminaries for the project briefs some technical details related to

deep learning and some architectures of different networks. It also include reviews of some

anomaly detection literatures. This chapter is concluded by some proposed approaches for

the project. Chapter 3 details how experiments will be organized, it covers information

about database, designs of network, scoring functions and evaluation metrics. Results

of these experiments are given in Chapter 4. Finally, Chapter 5 provides a conclusive

summary of current findings as well as our suggestions for future works.

7

Chapter 2

Background and related work

This chapter first reviewed approaches in the field of Anomaly detection. The first two

sections were aimed at AD related literatures, these sections will provide reader with enough

groundings of what AD task is. The following three sections were focused on providing

technical background in terms of deep-learning, in particular convolutional neural networks

some mathematical equations were displayed for clear understandings of the quantifications

we adopted.

2.1 Backgournds for Anomaly Detection

2.1.1 Taxonomy of Detection Approaches

In broad view, there are three types of traditional anomaly detection mode : Supervised;

unsupervised and semi-supervised. and two advanced mode: hybrid and One-class Neural

Networks(OCNN) [9].

Supervised Deep Anomaly Detection (DAD) uses labelled normal and anomalous data

to train a multi-classifier [11]. Thus a normal against anomaly classes predictive model is

built, any upcoming unseen datum will be compared against the model to destine what

8

type of class it belongs to. In practice, this technique is rarely used due to its two major

concerns. Meagre training data from anomalous class compare to normals’. Which in

turn causes class imbalance distribution in predictive classifier [15]. Another alarming

issue related to supervised DAD is the challenge in gathering representative and accurate

anomaly labels [88].

Semi-supervised DAD, compare to full supervised approach, is more extensively used

[9]. Methods in semi-supervised manner, abort the use of anomaly data so only normal

data will be used to train the classifier. Conversely, semi-supervised training technique also

applies to develope the model with anomaly data only [20]. Although several researchers

[20, 19, 26]showed their effort in this special case of AD, training with anomalous set is

still not commonly used[12] due to the fact of data gathering as discussed above.

Relying on the assumption of high prevalence with regrading to normal instances in

test set, unsupervised anomaly detection can be trained without demanding any labelled

training data, thus are more applicable [28]. several recent works including [94, 14, 95]

showing the superiority [9] of adopting unsupervised learning approach in AD field by giving

outperforming results when compare to traditional methods namely SVM[16],PCA[100],

and Isolation Forest[52].

One big advancement in field of machine learning recently is the emergence of neural

networks with their prodigious outcome over various domains [83]. Deep Learning(DL)

is used to represent data hierarchically in a neural network, it achieves greater results

and outperforms traditional machine learning based method given large scale of data[9].

Inevitably, recent years have witnessed the blooming of DL-based anomaly detection meth-

ods, multiple recent researches have shown that these methods outmatch the traditional

ones[69, 83].

Deep hybrid and OCNN are two state-of-art anomaly detection frameworks, based on

unsupervised model, both of them proposed the idea of data representation extraction

9

followed by a outlier detection.

In hybrid framework, deep leaning is applied to extract robust features. Those learned

features are then fed into traditional classification algorithm such as Radial Basis Func-

tion(RBF) or SVM [22, 101]. To achieve stat-of-art results, hybrid methods relying on the

following assumption[9]:

• A robust feature extraction mechanism, it benefits eliminating unwanted features

which may camouflage the anomalies appearance.

• A robust outlier detection algorithm which can be used on high-dimensional space.

The OCNN framework uses deep learning for feature extraction jointly with one-

class objective which is a hyperplane or a hypersphere for outliers separating[78]. Two

2018 experiments[78, 10] related to OCNN showed a comparable or better results than

state-of-arts for complex datasets. A successful OCNN model is built upon the following

assumptions[9]:

• No variation in common factors for anomaly data.

Comparing the two stat-of-art frameworks [80]: Hybrid and One-class Neural Networks.

Hybrid is more scalable and tackles the “curse of dimensionality” however, it uses generic

loss function so no controls over hidden layers’ representation learning. In OCNN pipeline,

feature extraction and outlier detection can be done simultaneously, but one significant

downside of using OCNN is that, it is a highly computational intensive model which result

in long-time training.

10

2.2 Anomaly Detection over x-rayed imagery

2.2.1 Candidate Approaches to Anomaly detection

Recall that a full anomaly detection workflow contains two parts: data representation and

outlier detection. Finding outliers is a well-studied task, current outlier detection methods

are based on following aspect [31]: boundaries, trees, distances and densities. In [82] an

one-class SVM is proposed where a hypersphere is created and any datum outside it will

be considered as anomalous. IForests [52] uses a tree-structure recursive partitioning to

find isolated points where a partition threshold is the length from root to terminating

node. Outliers can also be detected based on distance to k-nearest neighbours [23] or local

averages [54].

Density based approach use likelihood as anomaly score. [48] uses parametric fitting

to complete the density estimation, in [47], kernel-density-estimation is used for fitting

parametric form.

Recent AD works[3, 4, 31] suggest that, data representation plays a more important

role for AD.

One challenge for representation is that it needs to be just right : meagre representation

fails to make anomaly atypical while too generous representation would make every data

unique so does anomalies thus fails to make anomaly stands out as well. In practice, there

are three representations: raw, engineered and learned.

Raw representation is least effective [31] because they usually in complex dimensions

and most dimension only contributes irrelevant information.

Better than raw, engineered representations extract important features and suppress

the irrelevants. However, it is known to be hard to find such representations. This situation

is exacerbated in anomaly detection because there is nothing we know about anomaly class.

Among three representations, learned representations gives most preferable result. With

11

sufficient training data, it can achieve state-of-art performance for TD [31]. However, there

is no direct equivalent approach in AD. When in the domain of x-ray imaging, it brings

another challenge which is the limited number of training data. Insufficient data would

make any training method infeasible.

2.2.2 Review of the State-of-arts

In previous section, we mentioned having learned representations is desirable but not di-

rectly applicable in AD. In this section, several state-of-art AD works based on learned

representations will be reviewed.

In [4], an auto-encoder network is trained to represent reconstruction error of a datum.

In their approach, they use x-ray images of empty and non-empty containers. In one test,

they use empty one as normal,non-empty container as anomaly,then they swap the role for

another test. They derived a series of features which includes hidden representation, scalar

residual magnitude, the signed residual, the absolute residual and squared residual from

auto-encoder. For detecting outliers, they use Radial Basis Function Support Vector Ma-

chine(RBF SVM) [81]. Based on their empirical report, the proposed work demonstrated

some success in finding firearms concealed within empty cargo containers with up to 99.2%

accuracy [75]. However, the proposed auto encoder method does not show comparable

result when detecting non-empty cargo containers [31].

One major obstacles from [4] is the variability of items in container and the availability

of training data. Transfer-learning approach is proposed to address such issue. The basic

idea of transfer learning in x-ray images is to use training data which is not from x-ray

scans but other types of data sets.

[3] gives a preliminary transfer-learning attempts, they transfer learnt a CNN based

on a pre-trained image classification neural network called VGG [13]. Their results gives

a strong indication of borrowing idea of transfer-learning for AD is viable. Authors in [3]

12

later follow up their study with applying transfer-learning AD in x-ray images[2]. Based

on transfer learning CNN, authors use forest of random-split trees(FRST) or Isolation tree

[52] which is discussed in 2.2.1 to detect outliers. In addition, authors also propose a

random rotation on representation space to further improve their performance. Despite

their result is just 15% above random guess accuracy, their attempts and evaluations give

sufficient grounds for their most recent AD publication [31].

Approach given by [31] uses transfer learning and internal labels for training a CNN,

Wolfram ImageIdentify CNN [98], to extract feature representation. Then a density

method, multivariate Gaussian model is used for outlier detection.

Figure 2.1: Proposed CNN architecture [31]

The CNN is trained using normal photographic rather than x-ray images. Figure 2.1

shows the CNN architecture used in [31], the representation is extracted based on the 1024

activations in the final pooling layer. During testing, the test set are provided by Home

Office of UK government, they uses UK Stream-0f-commerce data set as normal class. A

staged-threat set is adopted for anomaly class where each parcel contains normal item

13

with a firearm. According to their test report, the proposed AD can achieve a real-time

detection speed and retains an accuracy of over 90%. However, such desirable achievements

come at cost of a 18% false alarm rate which is critical problem in an security system.

2.3 Artificial Neural Network

2.3.1 Overview

Artificial Neural Network (ANN) is a mathematical approximation of biological neural

system, and it consists of a collection of interconnected artificial neurons. Among these

neurons, their connection allows signals to be transmitted, just like activities going on in

biological synapses [24]. The origin of ANN can be traced back to 1940s, when McCulloch

and Pitts [59] proposed a McCulloch-Pitts model i.e. a logical calculus expression of

nervous activation. It was at the end of 1950s that the implementation [76] of the first

learnable ANN named single layer perceptron was launched. The advent of perceptron

can be regarded as a paradigm shift, yet the model have been subject to critique for its

applicability which is confined to linear separation (e.g., XOR problem) by research of the

following decade[62]. The limitation of previous perceptron is originated from its single-

layer-architecture and shortage of effective training methods. In 1986, the introduction of

back-propagation [79] and replacing single layer with multiple hidden-layers which activated

by Sigmoid function remediated such limitation. Three years after, Hornik et al. and

Cybenko found the universal approximation theorem which states network with more than

three layers can approximate any functions. Albeit such advancement, neural network has

failed to gain research popularity, partly due to the issue of Vanishing Gradient [36] and

generally insufficient computing resources for training [30, p. 12].

The current resurgence in the field of ANN begins in 2006 [35], this wave of development

has been further accelerated when increased amount of training data and more powerful

14

training hardware co-processor—Graphical Processing Unit (GPU)—has become widely

available. One noticeable achievement of neural network in this particular period is the

feasibility of training networks with deep-layer architecture [34, 35]

The process of assigning credits to each layer is now generally being branded as Deep

Learning (DL).

2.4 Basic Neural Network

2.4.1 Background

Performance of traditional Machine Learning (ML) algorithm is, in general, determined by

the choice of data representation. A good data representation can find and disentangle the

factors of variation which defines some simplified explanations about the observed data [30,

p. 4] such as the sex of human or color of a car. Acquisition of such representations in the

domain of machine learning requires researchers’ prior knowledge to hand craft them, this

process of finding features is usually being referred as feature engineering. In practical,

however, many high-level features are difficult to extract and the process of extraction

itself is labor-intensive, this sometimes makes engineering work as involved as solving the

original machine learning problem [30, p. 5]. Deep Learning is a desirable domain when

considering leveraging such overheads in ML by introducing representation learning. This

learning approach exploits the hierarchical structure within a complex concept such that

they can be represented by simpler concepts.

The quintessential instance in DL is the Multilayer Perceptron (MLP). MLP is com-

posed of many basic mathematical functions bridging the gap between input and output,

many of which can be interpreted as learned representations from raw input. This input-to-

output mapping is sometimes often referred to as feedforward deep network. Such network

breaks down the data mapping over three types of layers, namely the input, hidden and

15

output layers, and each of the layers is formed by nodes, the fundamental units in Neural

Network. Layers whose nodes are linked with all nodes from the previous layer are often

named as fully connected layers. The function of this particular layer is to integrate previ-

ously learned features and thus allows MLP to construct complex representations in such

a high-to-low level architectural way [53]. Figure 2.2 presented one basic MLP for object

recognition task. Nodes depicted in Figure 2.2 are represented by circles and connections

between nodes are symbolized by unidirectional arrows.

Input layer is the first layer in MLP, which is expressed as a one-dimensional vector

representing raw data inputs. In the context of object recognition, as shown in Figure 2.2,

the input layer is located at the bottom-most row, and the inputs are flattened RGB image

pixel values. One drawback of handling image input by using flattened image vector is that

it will compromise the spatial coherence or, concretely, local pixels, which, is necessary in

defining a good representation [6] in representation learning.

What follows the input layer is the hidden layer, most of which are as fully connected

layers. It is the place where representation learning happens. Following the flow of simple

to complex learning structure, representation learned in first hidden layer is very defined

and only low-level features like edges will be extracted. Complexity of learned feature

increased as the depth of network going deeper, as discussed earlier, this is due to nodes

from current layer are integrating all information from previous layer. Illustration of these

process can be found in example in 2.2, features in lowest level are all edges, middle level

feature such as corners and contours are detected in subsequent layer, the final hidden

layer always gives most complex, close-to-object shape. At the end of final hidden layer,

different activation functions are adopted based on how many classes reside in training set.

Typically, a sigmoid is used for binary case but softmax is more appropriate for multiple

classes.

16

Figure 2.2: Visualization of a simple MLP architecture. Figure from [30, p. 6]

Layer followed by the final hidden layer is the output layer, which, as its name already

implies, gives the output of a network. Depending on the task we are addressing, outputs

could be a single node for binary classification or multiple nodes for multi-class categoriza-

tion. Typical values for output layer are the beliefs of certain category, e.g., car, person

and animal as in the case of Figure 2.2.

2.4.2 Forward Propagation

The process of mapping input of a network to its output through all nodes of hidden layers

can be defined as forward propagation. Before diving into the details of neural network,

let us begin with the explanation about logistic regression [17], as multi-layer perceptrons

are somewhat related to it. In essence, we can regard a classic logistic regression as a

17

single-layer perceptron specialized for a binary classification where the input is directly

mapped to output without any hidden layers in between.

x0

x1

x2

xi

wj0

wj1

wj2

wji

zj =
∑

wjixi + bj aj = σ(zj) L(aj, yj)

bj

Figure 2.3: Signal flows for a node j in a MLP (with a Loss Function L(aj, y) at the end,
it is equivalent to a logistic regression)

Figure 2.3 presents a process of how data propagates through a node j of one layer.

The input of j is denoted by a vector x ∈ Ri, which is given by x = {x0 x1 · · · xi}

where i stands for the number of input nodes. Each input xi is associated with a input-

node-wise weights w = {w0 w1 · · · wi}, together with bias term b, the given node

first computes:

z =
∑

wixi + b

which can be written in the form of an affine transformation:

z = wTx+ b

At this stage, we need to apply non-linearity to our functions by means of activation

function σ. For logistic regression, sigmoid function:

σ(z) =
1

1 + e−z

18

is commonly used to map values into the range of 0 and 1 which can be directly interpreted

as probability of a class in binary classification. However, sigmoid activation is obsolete in

modern deep learning community with several issues, it is not zero-centred and is suffering

gradient vanishing. Although the shifted version of sigmoid, tanh, addressed the former

issue, problem of gradient vanishing remains unsolved. Use of Rectified Linear Unit (ReLU)

[29]:

σ(z) = max(0, z)

can help to solve gradient vanishing problem, thus it becomes commonly used activation

functions in training deep neural networks [71]. In practice, using ReLU would introduce

dead ReLU problem [97], but this problem can be resolved with Leaky ReLU function via

applying a minute gradient flow. In our project, only some relatively small sized neural

networks are trained and the use of Leaky ReLU did not better the model performance

significantly [55]. Thus, activation of Leaky ReLU is not necessary and ReLU is adopted

for our activation function through out the whole project.

In practice, making prediction using a neural network relies on the value of weights

and biases, and good prediction cannot come with random initialized values thus these

values have to be properly assigned first. In DL, assigning optimal weights and biases to

a network is called backward propagation (BP).

2.4.3 Loss Functions

At the end forward propagation, we obtain a probability distribution over classes. At this

point, we use loss function(L(aj, y) in Figure 2.2) to measure errors the network makes

or, in other words, quantifying the closeness of network’s prediction and ground-truth.

Therefore, the training process (BP) is essentially a process of minimizing errors. Inputs

of loss function are values from output layer and true labels, this requires both inputs are

19

of the same representation. Considering that most labels are just some scalars indexing

the class, for binary classification, outputting single probability value is sufficient, but in

terms of multi-class, we need to use one-hot encoding to map index into a vector y ∈ Rk

where k is the number of classes in training set. Name “one-hot” comes from the structure

of encoded vector where only the index of true label is “hot”(has value 1) and 0s elsewhere.

Recall the loss function, it can be formally expressed in the following form:

L (ŷ, y)

where ŷ is the prediction from our network for a single data point. The function that

measures average errors over the entire training set is named cost function and is defined

as follows:

J(θ) = J(w,b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
where w and b are parameter sets for weights and biases respectively, superscript i denotes

i-th training example and m is the total number of examples. In some machine learning

literature [7, p. 256], they may use some term called Objective Function which is a general

name given to any function in optimization task. Comparing to cost function, objective

function includes some penalizing or regularizing terms for better fitting performance.

Discussion of regularization is beyond the scope of our project, further readings of objective

function can be reviewed to [7]. Using cost function without any model complexity penalty

is sufficient for our research objectives.

One simple approach for now in defining our lost function is to use square loss:

L (ŷ, y) =
1

2
(ŷ − y)2

However, such function is not applicable in our optimization approach which will be dis-

20

cussed in subsequent sections, due to its non-convexity in logistic regression[85], this is

because the non-linear activation would break convexity. Doing so would eventually put

us into the situation of dealing with multiple local optima [27]. Before defining our convex

function, let us first look at the output of our network, it is a distribution, encoded label

is also in a distributional representation. Thus, we can use the function from informa-

tion theory called Kullback-Leibler Divergence as a metric to quantify similarity between

probability distributions, this function for two discrete distributions P,Q is given by:

KL(P∥Q) = −
∑
x∈X

p(x) log q(x) +
∑
x∈X

p(x) log p(x)

= H(P,Q)− H(P)

(2.1)

where term H(P,Q) denotes the cross-entropy between P,Q, and term H(P) denotes the

entropy of P . In essence, the learning process of our network is a process of making

predictions P (training) as close as possible to ground-truth P (label), which is equivalent

to minimizing KL-divergence KL(P (label)∥P (training)). In practical, we can just compute

cross-entropy term from (2.1) for optimization since entropy of ground-truth H(label) is

constant. Fortunately, cross-entropy is a monotonic function(convex in logistic regression),

therefore, we use this function as our loss function throughout the entire experiment.

Consequently, we can define our cost function as:

J(w,b) =
1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
= − 1

m

m∑
i=1

y(i) log ŷ(i) +
(
1− y(i)

)
log

(
1− ŷ(i)

)
(2.2)

2.4.4 Backward Propagation

After forward propagation, the network is measured by a cost function (2.2) which indicates

how well a network’s predictions are via the value of errors. The optimization objective

is to let error information flows backwardly which allows parameters of network being

21

updated.

x0

x1

x2

xi

dwj0

dwj1

dwj2

dwji

dzj = aj − yj daj =
dL(aj ,yj)

daj
L(aj, yj)

dbj

Figure 2.4: Schematic of backward propagation at layer j

One classic optimization approach in statistics is to use so called stochastic gradient

descent[74, 61], with this algorithm, parameters are updated with the negative direction of

gradient from loss function. Figure 2.4 depicts how parameters are updated based on gra-

dient through propagating errors backwardly. However, such optimization requires finding

analytical expressions for the whole parameters set when each data examples presented,

which, in deep learning, is infeasible due to the heavy computational cost.

A better efficient way of finding gradients in neural network is termed backward propa-

gation [79]. The central idea of BP comes fairly straightforward, the chain rule: given two

functions f and g and let y = g(x), the derivative of their composition z = f(y) = f(g(x))

can be expressed by:

dz

dx
=

dz

dy
· dy
dx

Applying chain rules to neural networks which is just a multivariate and higher-dimension

cases [25], requires finding Jacobian matrix J of f(g(x)):

Jf(g)(x) = Jfg(x) · Jg(x) (2.3)

Function 2.3 proposed a more efficient way of finding gradient. In context of backward

22

propagation, it is common to use this Function 2.3 with gradient descent where the network

is feeded with entire training set to compute gradient of parameters in one times. Due to

the memory concern, our project uses an alternative optimization method called mini-batch

gradient descent [77] where only a small portion of training data is feeded to network.

2.5 Convolutional Neural Network

2.5.1 Overview

Convolutional Neural Network (CNN or Conv Net) is an extension to deep neural network

except having different layer type, both of them can be fed and trained in the same way.

2.5.2 Convolutional Layer

As discussed in section 2.4.1, in computer vision problems, classic NN discard the infor-

mation from neighbor pixels [89]. In addition to this, another defects from NN is the

memory-unfriendly input representation. For a RGB image with size 128 by 128, it would

result in an 6 million-dimensional input vector. Reason why Convolutional Neural Net-

work is superior [44] in vision problems than traditional deep neural network is because

the introducing of a Convolutional Layer (Conv layer).

Most important computations inside a Convolutional Layer is called convolution and

this is where the name convolutional comes from. A convolution consists of filters and

outputs a feature map, filters are in relatively small size (e.g. [3× 3] or [5× 5]) as the one

in Figure 2.5. These small-scaled filters are sliding through the width and height of input

feature map, computing dot products with entries they overlapped and each dot product

forms an entry for output feature map.

23

Figure 2.5: [3× 3] filter example. Figure from [21]

An example of how a [3× 3] filter is convolved with a [5× 5] input feature map is given

in Figure 2.6:

Figure 2.6: A convolution example with filter size [3×3] and input feature map size [5×5].
Figure from [21]

Above example depicts how convolution works in 2-d, this operation is expandable to

higher-dimension. In most CNN architecture, input image might be of 3-dimension, to

comply with 3-d input(or input feature map if previous layer is not the input layer), cubic

filters are needed for convolution. These filters will sliding within the volume of input

doing dot product and still output a single [1× 1] entries. Sometimes, multiple number of

filters might be used to extract more features, once all filters are iterated, the collection of

all those corresponding feature map will form a cubic output volume, the depth of volume

is given by the number of filters used.

For a Convolutional Layer, several hyperparameters are used for tuning, what we have

just covered is the filter counts. Stride is another parameter used to control how many

24

pixel skips a filter must take before making next dot product. The third which is the last

hyperparameter in Convolutional Layer is called padding, it is used to maintain the input

and output size consistency by adding a zero-valued border to the input volume. Further

details of hyperparameter tunning will be given in the chapter of Implementation.

2.5.3 Convolutional Layer Frameworks

One decisive factor that differentiates CNN from classical Artificial Neural Network is its

convolutional layers. Besides the aforementioned Conv Layer, classical CNN architecture

consists of two additional types of layers, namely pooling (downsampling)layer and fully-

connected layer. Purpose of using pooling layer is to reduce resolution of feature maps,

this would enables spatial invariance to distortion and translation [72, 49]. Mainstream

pooling layers have two variations: max pool and average pool.

Figure 2.7: Two types of pooling layer example. Figure from [72]

The computation of both pooling is fairly simple, Figure 2.7 demonstrates how these two

layers is operated on a [4×4] feature map. We can see the original map is downsampled to

25

[2×2], entries with same color are pooled to become one entry. The difference between two

pooling method is based on how entries are pooled (i.e., averaging or extracting maximum).

Generally, pooling layers are always come right after a Conv layer. In practice, pooling

layer can be replaced by a series of convolutional layers with properly chosen stride and

filter size. This does not cause any loss to accuracy but rather, performs slightly better

when training for small sized CNN [86, 38]. Hence, for our project, we will avoid using of

pooling layer but employing convolutional layer instead.

Before output layer, there will be one or multiple fully-connected layers as described

earlier to connect the learned representation from final pooling layer or equivalent Conv

layer to the final output layer.

Modern literature in deep learning CNN may also include some regularization layers

such as dropout [87] and batch normalization [39]. Having these layers can effectively pre-

vent model overfitting, therefore, we will consider include them into our CNN architecture.

Figure 2.8: CNN architecture for hand-written digit classification data set. Figure from
[68]

CNN architecture from Figure 2.8 have demonstrated how an image of a hand-written

digit was classified. As we can see, the size of feature map decreased through propagation

but increased in terms of the amount of them. Once CNN completes feature extraction,

26

all feature maps will be flattened and connects to a fully connected layer, similar to a

traditional network, outputs from fully connected layer are activated by a softmax function

for classifying input digits.

Recent CNNs are deeper and having more complex blocks in architecture for state-of-

art computer vision performance such as VGG-16 [84] and Inception network [90]. Using

network like these may grant us better detection result but the purpose of our research

does not focus on performance but some results generated by running many different CNNs.

Training multiple networks with architecture like VGG-16 or Inception may cost months

of efforts which seems rather impractical for our project given the limited amount of time.

Since one of our training set consists hand-written digit which is the same set used in

2.8, therefore, our proposed CNN structure is highly inspired by this architecture. Based

on network depicted by 2.8, our network also added dropout and batch normalization

layer and using convolutional layer for subsampling. Finally, the choice is learning rate is

determined by using Adam Optimizer[41], additionally, a annealer scheduler [43] is include

to prevent optimizer running into local minima issues. Details of network structure and

all hyperparameters can be found in Table 2.1

27

Table 2.1: Proposed CNN architecure

Layer Types Kernel Size Stride Units Output Map Size Batch Norm Activation Paddings

Input None None 1 28× 28 False None False

Convolution 3× 3 1 32 26× 26 True ReLu False

Convolution 3× 3 1 32 24× 24 True Relu False

Convolution 5× 5 2 32 12× 12 True Relu True

Dropout Layer(0.4)

Convolution 3× 3 1 64 10× 10 True Relu False

Convolution 3× 3 1 64 8× 8 True Relu False

Convolution 5× 5 2 64 4× 4 True Relu True

Dropout Layer(0.4)

FlattenLayer()

Fully Connected None None Variable 1× 1 Yes Softmax False

Hyperparameters

Epochs 20

Optimizer Adam α = 0.001 β1 = 0.9 β2 = 0.999 ϵ = 1e−08

Loss Cross-Entropy

Annealer λ(x) : 0.001× 0.95(x+epochs)

28

Chapter 3

Experiments

Our experiments are based on the following hardwares: 16GB RAM, GTX1070 Max-Q

GPU and Intel Core i7-8750H CPU.

This chapter aims to present the experiment details in our project. The proposed

functions and architecture of CNNs are explained in this chapter.

3.1 Dataset

Our experiment would use two 10-class-digit data sets: Street View House Number (SVHN)

[65] and MNIST [50]. Both of them will be used for training CNN and detecting anomalies.

MNIST is a database for hand-written digits with a total of 70,000 examples including

60,000 examples for training and 10,000 examples for testing. SVHN data set consists

house number digits obtained from Google Stree View, this database has 73,257 training

data and 26,032 testing images. From training sets, 33% of data are used to form validation

sets.

Images in MNIST dataset are of size [28× 28] in grey scale, examples from SVHN are

RGB images with shape of [32 × 32]. Preprocessing techniques is applied to SVHN data,

29

these images are resized to [28 × 28] and converted to grey scales. Apart from keeping

dimension in accordance with MNIST, all examples are normalized to map pixel value

from [0, 255] to the range [0, 1].

3.2 Implementation

3.2.1 Proposed CNN Architecture

Our final CNN architecture throughout the experiment are given in Figure 3.1. As dis-

cussed earlier in Section 2.5.3, downsampling layer are replaced by strided convolution

layers.

Figure 3.1: Our proposed CNN architecture. Input to this architecture is a [28×28] image
example and it outputs a [1×10] “one-hot” encoded lable. This network consists six Conv
layers colored in champagne, without padding, the input feature map will keep downsam-
pling which results in a 1024 parameters flattened layer. A fully-connected layer(in light
violet) is added to map output from the flattened layer.

Every layer in our architecture is followed by a batch normalization layers which is

highlighted in a darken color. Furthermore, layers in orange are dropout layer attached

30

after some batch-norm layers. The only fully-connected layer(in light violet) in our CNN

are termed as the final pooling layer based on the naming fashion used in [31]. Our anomaly

detection research is based on the learned representation from this particular pooling layer

in various sizes.

3.3 Anomaly Detection Pipeline

Learning Representations

Our anomaly detection workflow can be summarized into two steps: feature extraction

and outlier detection. We designed a network pool with varying final pooling layer size

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384], choice of these value is based

on power-of-two heuristic[63] in order to achieve optimal performance in representational

learnings[40]. We trained our networks from the pool with both datasets, later, we will

retrieve values reside in those final pooling layers as the representation.

Anomaly Score Function

Our approach for detecting anomalies is to find so-called anomaly score for each data

representation, the higher the value, the higher in chance an example is an anomaly. For

the following experiments, we use the logarithm of squared Mahalanobis distance [60]

as a metric for our anomaly score. The distance equation of an observation x ∈ Rn :

(x1, x2, x3, . . . , xn)
T with means µ ∈ Rn : (µ1, µ2, µ3, . . . , µn)

T is given by:

DistanceM(x) =
√

(x− µ)TΣ−1(x− µ) (3.1)

where Σ ∈ Rn×n is the covariance matrix for observation x. Parameters in Equation (3.1)

are obtained through fitting aMultivariate Gaussian Distribution [93, p. 6], the distribution

31

for a variable x is :

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.2)

The rationale of using Gaussians for modeling anomaly-normal data distribution is be-

cause the central limit theorem and data which is not normally distributed can also be

transformed into a Gaussian [92].

Note, our equation involves inverting large matrices, to eliminate the potential of in-

verting a singlar-matrix, we added an identify matrix I scaled by ϵ to Σ. Choice of ϵ values

are based on finding ϵ through multiple runs with various values, so that having an optimal

anomaly detection result.

Dataset Manipulation

When in the stage of outlier detection, we first divide data set into two-class: anomaly and

normal. These sets are organized as follows, for each class from 0 to 9, assign examples

with current label as anomaly and the rest with normal, thus we get 10 different anomaly-

normal data sets. Among the normal sets, we further split them into two folds:sample and

test-normal. Then, we use data from sample set to fit 3.2. Examples from anomaly and

test-normal set are mixed to form a final mixed test set which are used for evaluating AD

performance.

Evaluation Method

Adjusting the threshold value for determining an anomaly will produce statistics into four

sets for each threshold: true positive, true negative, false positive and false negative. Based

on these stats, we can form an evaluation curve called Receiver Operating Characteristic

Curve (ROC) which is based on the calculated true positive rate against false negative

32

rate. This curve visualized a binary classifier’s diagnostic ability by varying its discrimi-

nating threshold. This metric is highly suitable for our experiments because it properly

handles the continuous score thresholding values and it also fits class-imbalance situation

[8]. Area Under the Curve (AUC) is often computed once we obtained ROC, it computes

the integration of the curve, thus ranges between 0 and 1. Value of AUC being 0.5 stands

for machine is doing complete random guess where 1.0 indicates a perfect classification.

3.3.1 Summary

Having explained the prerequisites of our experiment, here are how our experiments are

conducted, we begin with training multiple CNNs from pool, feed CNNs with all data sets;

sample,mixed test to get representations. Representations from sample set are used to fit

Equation 3.2, this will model the distribution of normal set cluster. Detecting whether a

given example is an anomaly or not are based on how further it is towards the normal data

cluster, therefore, distances for every examples from mixed test are measured by Equation

(3.1). Finally, ROC graphs for each networks over 10 anomaly classes are presented and

the associated AUC is computed.

One of our research is to explore idea of applying transfer learning in AD, therefore,

dataset used for training CNN is different to the one used in outlier detection stage. In

practice, our first experiment namely SVHN experiment uses SVHN for training network

and uses MINST for detecting anomalous data. Conversely, we also conduct the MNIST

experiment where we use MNIST for training CNNs and SVHN for AD.

At the end of each experiments, a baseline AD algorithm based on fitting Multivariate

Gaussian directly to raw pixel data without any manipulations. This baseline is set to

signify the feasibility of our proposed transfer learning AD framework.

Figure 3.2 depicts our overall experiment pipeline for SVHN-experiment, this pipeline

is similar to what we have done in mnist experiment with only data set being swapped.

33

From the figure, we only gives one anomaly-normal splits. In practical, we will repeat this

process 10 times because we have 10 anomaly-normal pairs.

34

(a) We use data from SVHN set to train our CNNs with different pooling layer size.

(b) We split MNIST into anomaly and normal set, based on that, we form the test set and sample
set. And use learned CNN to extract their representations.

(c) We use data from sample set to fit distribution of normal examples. Then we use our scoring
function to measure the distance of examples in test set to centroid of normals. Larger anomaly
score indicates more likely that data is an anomaly.

Figure 3.2: Schematics of our experiment.

35

Chapter 4

Results and Analysis

This chapter will demonstrate our results and analysis of our project’s experiment. This

chapter also provide the process of gathering some hyperparameters such as ϵ and layer

size.

4.1 Determing Epsilon

Before beginning anomaly detection, we need to specify our values of ϵ first, what we have

done is to varing ϵ from the set:

[0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 0.000001]

We tested our networks from 3 network pools and find out, as given in Figure 4.1, that

networks with ϵ value of 0.001 will reach their optimal performance in anomaly detection

except few rare cases where covariance matrix Σ is invertible already. Based on this

findings, we will keep ϵ = 0.001 throughout the rest of our experiments.

We did the same things for our baseline algorithm. The finalized value of ϵbaseline is 0.1.

36

Figure 4.1: Results from one of our epsilon test.

4.2 SVHN Experiment

One of our research objective is to examine how size of final pooling layer affects AD

performance over transfer-learned representation. For this purpose, we designed a pool

of 14 CNNs with different final pooling layer sizes ranges from 21 up to 214. Practically,

training a neural network begin with a random initialization phase, which means two

networks even with same network structure may still give varied results. To get a more

consolidated conclusion, under limited amount of experiment time, we additionally trained

extra 6 network pools. Thus, our conclusion are drawn from the average of in total of 7

network pools with each have 14 CNNs.

During training, we keep track of their digits classification accuracies from validation

set. All training accuracies data curated are somewhat showing similar tendency as the

one given in Figure 4.2.

37

Figure 4.2: CNN Validation accuracy from one of our trained network pool.

We can see having pooling size of 2 is impossible for classification task, accuracy grows

with size and plateaued at size 16.

All networks are tested using test set discussed in Section 3.1, we hereby provide testing

results for 4 network pools in Figure 4.3.

Figure 4.3: CNN Testing accuracy from four of our trained network pool. According to
Validation result, accuracy in size 2 is trivial, thus we further zoomed our axes into the
range [0.9, 1.0]

Results in Figure 4.3 showed similar accuracy curve to our validation curve with an

38

increased accuracy in size 4. Combine two figures together, we see our training process

are giving decent results without any issue of having high variance or bias. Therefore, we

conclude our convolutional neural networks are capable to learn some resultful represen-

tations from digits. With these results, we are able to proceed our experiment to outlier

detection.

4.2.1 Detecting Anomalies

After experiments from previous section, we have trained 7 network pools using SVHN

dataset. In this section, we will use the representations from the output of final pooling

layer to fit the gaussian model and detecting anomalies.

We feed all networks with MNIST testing dataset, for each network, we extract values

from the final pooling layer. Among these representations, based on their associated labels,

we form the anomaly and normal sets in the form given by Figure 4.4:

Figure 4.4: Splits of data representations

For each data in Normal Class, we use 10,000 of them to fit distribution in (3.2) and

another 4000 data are randomly picked to form test-normal set. Data from test-normal

are combined with 4000 data from anomaly class to form the mixed-test set. Main rea-

39

son of only use part of data set is because of the limited computing resources such as

memory. Apart from the issue of meagre memory, our experiment also was hinderd by in-

verting large-size covariance matrix not because the non-invertibility problem but the huge

amount of elapsed-time for CPU to complete those inversions. We therefore uses CUDA

programming(Python’s CuPy library[66]) to speedup heavy numerical computations.

We use our proposed anomaly score function to compute scores for all examples in

mixed-test. ROCs for each network are obtained based on the threshold between the

extrema of anomaly scores. Figure 4.5 is the averaged AUC over 7 network pools for each

anomalous digits over 14 different pooling layer sized CNNs.

Figure 4.5: Averaged AD AUC for 10 anomaly classes for 14 networks

We can see the performance of anomaly detection for most digits are increased as size

of pooing layer grows except digit class 1 and 9. The reason why detecting anomaly digit 1

is unpredictable might be because the shape of one is overly simple(shape of an edge) and

having big pooling size might force the network shatterring such simple feature structure

into multiple pieces and these networks cannot simply reconstruct those pieces back to

edge-like feature. Class 9 shows a steady AD result with the chance close to random guess,

reason behind this finding, possibly, due the learned representation of 9 does not have

distinct characteristics to other classes so that the anomaly score for class 9 and normal

40

classes are entangled together.

Results from Figure 4.5 can be further averaged, as shown in Figure 4.6, to form an

overall AD AUC for 14 different pooling size networks.

Figure 4.6: Overall AD AUC for each network

We can see the plot from Figure 4.6 showing a upward tendency in terms of anomaly

detection performance. Just for the reference, our baseline method has AD performance,

on average, 0.673, which means the baseline algorithm is compatible to layer size less than

128. This graph is not in the shape of what we initially expected: having overly large

pooling layer size will result in a decrement in anomaly detection performance.

4.3 MNIST Experiment

This experiment are conducted in the same way as in SVHN experiment with same network

architecture setup except we swap the dataset used for training CNN and for anomaly

detection. Figure 4.7 showed our testing accuracy, comparing to SVHN, images in MNIST

have less variational form in terms of appearance so changing pooling size would not have

too much impacting on testing.

41

Figure 4.7: CNN testing accuracy on MNIST dataset for three runs.

The anomaly digits’ class-wise detection AUC are given in Figure 4.8

Figure 4.8: Averaged AD AUC for 10 anomaly classes for 14 networks detecting anomaly
digits from SVHN dataset.

According to this result, we also observed the growing performance when we use larger

pooling size network. However, class 0 and 1 are having AUC that is below 0.5, our scoring

function for the given representation is unable to produce large score for these two classes.

Similar to SVHN experiment, averaging values from Figure 4.8 will produce plots for overall

AD performance.

42

Figure 4.9: Overall AD AUC for each network when detecting anomalies from SVHN
dataset.

Figure 4.9 depicts the overall AD performance of 14 different network trained on

MNIST. For the reference, our baseline method’s performance achieved 0.508(result can be

found in AppendixA) which is really means baseline for separating anomalies from SVHN

is inappropriate. Although these network presented very limited anomaly detection ability,

we can conclude that in the domain of anomaly detection, if one needs transfer learning,

we suggest transfer from a data whose distribution comes from a larger and more varied

domain.

4.4 Qualitative Inspection of Data Distributions

Our findings yielded by anomaly detection experiment still remain elusive, especially, the

unpredictable detection rate from anomaly classes of [1, 9] in SVHN experiment. Although

we have provided our initial speculations for these unexpected observations, to further

understand what factors contribute to such counter-intuitive result, we inspect digits’ raw

pixel distributions as well as the distributions of their representations. Additionally, we

also inspect the anomaly scores’ distribution for examples in mixed-test.

Firstly, we plot pixel value distributions for images from both SVHN and MNIST

43

dataset based on PCA dimensionality reduction [100] and t-SNE [56].

(a) Visualization of pixel values from SVHN

(b) Visualization of pixel values from MNIST

Figure 4.10: Raw pixel data visualization for our datasets.

Figure 4.10 visualized how image pixels are distributed over the space, these graphs may

help to clarify why our baseline algorithm is not applicable to SVHN data(non-gaussian)

while giving much decent result from MNIST. These scatter plots also evidenced our inter-

pretation that SVHN is a more challengeable set thus, more varied domain than MNIST.

In order to visualize learned representation, we extract features from a CNN with

2048 pooling layer size because ,according to Figure 4.6, this network have shown a good

representational learning ability supported by its nice AD results and layers with size

44

greater than 2048 do not show any significant improvements in anomaly detection. We

also provide visualizations of representation’s distribution from different scaled CNNs in

the Appendix A, these might give reader and us good intuition of how CNNs learned

representation progressively.

Figure 4.11 have justified our statement about strong feature extraction ability for our

2048-sized pooling layer CNN. Comparing to result from Figure 4.10a, this time, we can

observe clear boundaries from class to class.

(a) Data plotted by PCA

(b) t-SNE visualization

Figure 4.11: 3-D data visualization for SVHN representations learned by CNNs trained on
SVHN

For SVHN experiment, what we really interested at is how our networks extract fea-

45

(a) Data plotted by PCA

(b) t-SNE visualization

Figure 4.12: 3-D data visualization for MNIST representations learned by CNNs trained
on SVHN

tures from transferred domain: from SVHN to MNIST. Figure 4.12 illustrated the learned

representation from our CNNs for transfer learning. Results from this figure shows clusters

for classes from MNIST feature in normal distribution. This might give us a good intuition

of why our proposed anomaly score Function (3.1) works.

Finally, we convert those plots based on Figure 4.12 to a two-class classification:

anomaly and normal. Hopefully, with these new plots in Figure 4.14, the confounded

detection result of class 1 and 9 can be elucidated.

In addition two class 1 and 9, we also plot class 2(anomaly class with the highest AUC)

46

as a contrast. From the Figures A.4a and A.4b, their distributions from t-SNE have one

common characteristic, that is, they spread more widely than the distribution from class

2. This distributional presentation might partly due to high-level feature from most digits

integrates simple shape like edge, digit 1 coincides to resemble in appearance of an edge

and such feature are also shared by most of other digits.

Since our scoring function is measuring distance to the centroid of normal-class, ide-

ally, examples from an anomaly class ought to be further away to the cluster formed by

normal-class data with a small standard deviation from their mean. Class with an overly

diffused distribution would consequently raise many false alarms due to part of its data

distributed being so close to the centroid of normal’s. When in juxtaposed with class 2,

the manifestations of class layout from digit 1 and 9 give some corroborative data to this

explanation.

Figure 4.13: Two-class t-SNE visualization for anomaly classes 1, representation learned
by a CNN with size of 8 pooling layer.

We previously hypothesised that simple shape like edge cannot be properly expressed

47

by large pooling layers. To justify this thought, we look into the data representation

distribution extracted from network with small pooling layer. As shown in Figure 4.13,

we discovered that class 1, the digit with the simplest shape, is presenting a good outlier’s

characteristic: most data are relatively distant to cluster’s centre. This increase the chance

of being identified as an anomaly. More distributions from PCA are located in Appendix

A.

48

(a) Anomaly class: 1

(b) Anomaly class: 9

(c) Anomaly class: 2

Figure 4.14: Two-class t-SNE visualization for anomaly classes: 1 2 9

49

Chapter 5

Conclusions and Suggestions for

Future Work

5.1 Report Summary

The objective of our project was to explore the relationship between size of final pooling

layer for Convolutional Neural Networks and anomaly detection performance. Particularly,

we examined networks’ transfer learning performance on two digit dataset namely: SVHN

and MNIST. Additionally, we tried to seek into the basic condition that a transfer learning

task needs to meet.

In detail, we first created a pool with a total of 14 different pooling layer size CNNs.

We trained them with SVHN digits then investigate these networks ability on detecting

anomalous examples from MNIST dataset. Meanwhile, we also conducted a similar ex-

periment but with dataset swapped. We repeated experiments several times until we were

convinced that our results are generalized without empirical bias. The former experiment

were set to explore whether or not anomaly detection performance would scale with the

size of pooling layer. Based on our prior knowledge in deep learning, without any exper-

50

imental progress on AD, we speculated that having overly large pooling layer will cast

negative impact on detecting anomalies. However, to the best extend of our experiments,

our results cannot attest to our initial hypothesis, instead, performance is scalable to the

size of pooling layer and is 20% better than our baseline’s performance. In addition to

these findings, we also noticed some anomaly digit class, e.g. 1 is inversely proportional

to layer size. But such observation is statistically explicable, because digit 1 itself can be

recognized as an edge which is a common feature that is shared by other classes’ in their

high-level representations.

Our next experiment explored the feasibility of applying transfer learning from a less

varied domain to a more versatile domain. We hypothesize that this cannot work and

our claim is empirically validated. Although having larger pooling layer contributes better

detection result and those results are slightly better than guessing by chance or baseline

algorithm, with close to 56% accuracy, we are not convinced that networks having such

results is suitable for anomaly detection.

Finally, our research on visualizing data distribution really helps with unriddling puz-

zling finding during experiments. With most data being visualized, we are able to explain

why both baseline method and CNNs act as random guess classifiers. Our analysis from

Figure 4.10a and A.3 shows that our CNNs trained on MNIST cannot successfully extract

peculiar features from SVHN, this is the by-product from an illy choice of dataset for trans-

fer learning. Despite the SVHN representation learned from CNNs by MNIST indeed gives

some separation boundary between classes, our anomaly score function cannot utilize such

representation in practice. We therefore hypothesized that with a more advanced scoring

function or through data augmentations, transfer from less varied domain might still out-

put desirable detection results. We also remain doubted that detection performance would

continue to grow without dropping, provided with more larger pooling layer size network.

In sum, our research on optimizing recognition representation on detecting anomaly data

51

can at least show that, raising neural networks’ layer size to an impractically large value

would in fact, offer researchers in anomaly detection with a better performed classifier.

5.2 Suggestions for Further Work

Future work should first consider justifying our conclusions by extending to datasets of

other domains such as the x-ray imagery or medical imaging dataset. Due to limited

computing resources, we are unable to pursue our study with larger pooling layer, we

hereby suggest prospected researchers can push the size of pooling layer into its limit to

further explore whether our findings holds. For researchers with strong computational

resources, it might be worth the efforts in conducting relevant experiment on CNNs and

dataset from [31] which is what we originally planned to do.

Hitherto, state-of-art advancements in deep learning, it would be interesting to im-

plement our research objective to more advanced neural-network’s framework such as the

Residual Neural Network [33] and Generative Adversarial Network [70].

52

Bibliography

[1] Aderemi O. Adewumi and Andronicus A. Akinyelu. A survey of machine-learning and

nature-inspired based credit card fraud detection techniques. International Journal

of System Assurance Engineering and Management, 8(S2):937–953, dec 2016. doi:

10.1007/s13198-016-0551-y.

[2] Jerone T. A. Andrews, Nicolas Jaccard, Thomas W. Rogers, and Lewis D. Griffin.

Representation-learning for anomaly detection in complex x-ray cargo imagery. In

Amit Ashok, Edward D. Franco, Michael E. Gehm, and Mark A. Neifeld, editors,

Anomaly Detection and Imaging with X-Rays (ADIX) II. SPIE, may 2017. doi:

10.1117/12.2261101.

[3] Jerone TA Andrews, Edward J Morton, and COM Lewis D Griffin. Transfer

representation-learning for anomaly detection. 2016.

[4] Jerone TA Andrews, Edward J Morton, and Lewis D Griffin. Detecting anomalous

data using auto-encoders. International Journal of Machine Learning and Comput-

ing, 6(1):21, 2016.

[5] John E. Ball, Derek T. Anderson, and Chee Seng Chan. Comprehensive survey of

deep learning in remote sensing: theories, tools, and challenges for the community.

Journal of Applied Remote Sensing, 11(04):1, sep 2017. doi: 10.1117/1.jrs.11.042609.

53

[6] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new

perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35

(8):1798–1828, aug 2013. doi: 10.1109/tpami.2013.50.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[8] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the

class imbalance problem in convolutional neural networks. Neural Networks, 106:

249–259, oct 2018. doi: 10.1016/j.neunet.2018.07.011.

[9] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection:

A survey.

[10] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly

detection using one-class neural networks.

[11] Raghavendra Chalapathy, Ehsan Zare Borzeshi, and Massimo Piccardi. An investiga-

tion of recurrent neural architectures for drug name recognition. In Proceedings of the

Seventh International Workshop on Health Text Mining and Information Analysis.

Association for Computational Linguistics, 2016. doi: 10.18653/v1/w16-6101.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009. ISSN 0360-0300. doi:

10.1145/1541880.1541882. URL http://doi.acm.org/10.1145/1541880.1541882.

[13] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of

the devil in the details: Delving deep into convolutional nets.

[14] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ECG time signals via

deep long short-term memory networks. In 2015 IEEE International Conference

54

on Data Science and Advanced Analytics (DSAA). IEEE, oct 2015. doi: 10.1109/

dsaa.2015.7344872.

[15] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial. ACM

SIGKDD Explorations Newsletter, 6(1):1, jun 2004. doi: 10.1145/1007730.1007733.

[16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995. doi: 10.1023/a:1022627411411.

[17] J.S. Cramer. The origins of logistic regression. SSRN Electronic Journal, 2003. doi:

10.2139/ssrn.360300.

[18] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems, 2(4):303–314, dec 1989. doi: 10.1007/bf02551274.

[19] D. Dasgupta and F. Nino. A comparison of negative and positive selection algorithms

in novel pattern detection. In Smc 2000 conference proceedings. 2000 ieee interna-

tional conference on systems, man and cybernetics. ’cybernetics evolving to systems,

humans, organizations, and their complex interactions’ (cat. no.0, volume 1, pages

125–130 vol.1, Oct 2000. doi: 10.1109/ICSMC.2000.884976.

[20] Dipankar Dasgupta and Nivedita Majumdar. Anomaly detection in multidimensional

data using negative selection algorithm. volume 2, pages 1039 – 1044, 02 2002. ISBN

0-7803-7282-4. doi: 10.1109/CEC.2002.1004386.

[21] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep

learning.

[22] Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher

Leckie. High-dimensional and large-scale anomaly detection using a linear one-class

55

SVM with deep learning. Pattern Recognition, 58:121–134, oct 2016. doi: 10.1016/

j.patcog.2016.03.028.

[23] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A

geometric framework for unsupervised anomaly detection. In Applications of data

mining in computer security, pages 77–101. Springer, 2002.

[24] Zhou Fei-yan, Jin Lin-peng, and Dong Jun. Review of convolutional neural network.

Chinese Journal of Computers, 40(6):1229–1251, 2017. (In Chinese).

[25] Gary William Flake and Barak A Pearlmutter. Differentiating functions of the ja-

cobian with respect to the weights. In Advances in Neural Information Processing

Systems, pages 435–441, 2000.

[26] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix

processes. In Proceedings 1996 IEEE Symposium on Security and Privacy, pages

120–128, May 1996. doi: 10.1109/SECPRI.1996.502675.

[27] K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures

of multilayer perceptrons. Neural Networks, 13(3):317–327, apr 2000. doi: 10.1016/

s0893-6080(00)00009-5.

[28] A. Gibson and J. Patterson. Deep Learning: A Practitioner’s Approach. O’Reilly,

2017. ISBN 9781491914250. URL https://books.google.co.uk/books?id=

BdPrrQEACAAJ.

[29] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial in-

telligence and statistics, pages 315–323, 2011.

56

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[31] Lewis D. Griffin, Matthew Caldwell, Jerone T. A. Andrews, and Helene Bohler.

“unexpected item in the bagging area”: Anomaly detection in x-ray security im-

ages. IEEE Transactions on Information Forensics and Security, 14(6):1539–1553,

jun 2019. doi: 10.1109/tifs.2018.2881700.

[32] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier detec-

tion using replicator neural networks. In Yahiko Kambayashi, Werner Winiwarter,

and Masatoshi Arikawa, editors, Data Warehousing and Knowledge Discovery, pages

170–180, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-

46145-6.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition.

[34] G. E. Hinton. Reducing the dimensionality of data with neural networks. Science,

313(5786):504–507, jul 2006. doi: 10.1126/science.1127647.

[35] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 18(7):1527–1554, jul 2006. doi: 10.1162/

neco.2006.18.7.1527.

[36] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradi-

ent flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[37] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359–366, jan 1989. doi:

10.1016/0893-6080(89)90020-8.

57

[38] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications.

[39] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[40] Rishabh Kumar Jain, Rajeswari Ponnuru, Ajit Kumar P., and Ravi Keron N. Cifar-

10 classification using intel® optimization for tensorflow. Intel® AI Developer

Program, December 2017. URL https://software.intel.com/en-us/articles/

cifar-10-classification-using-intel-optimization-for-tensorflow.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

[42] B. Kiran, Dilip Thomas, and Ranjith Parakkal. An overview of deep learning based

methods for unsupervised and semi-supervised anomaly detection in videos. Journal

of Imaging, 4(2):36, feb 2018. doi: 10.3390/jimaging4020036.

[43] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, may 1983. doi: 10.1126/science.220.4598.671.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification

with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,

may 2017. doi: 10.1145/3065386.

[46] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C. Suh, Ikkyun Kim, and

58

Kuinam J. Kim. A survey of deep learning-based network anomaly detection. Cluster

Computing, sep 2017. doi: 10.1007/s10586-017-1117-8.

[47] Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub Pokrajac. Outlier detec-

tion with kernel density functions. In International Workshop on Machine Learning

and Data Mining in Pattern Recognition, pages 61–75. Springer, 2007.

[48] R. Laxhammar, G. Falkman, and E. Sviestins. Anomaly detection in sea traffic - a

comparison of the gaussian mixture model and the kernel density estimator. In 2009

12th International Conference on Information Fusion, pages 756–763, July 2009.

[49] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten

zip code recognition. Neural computation, 1(4):541–551, 1989.

[50] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[51] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Se-

tio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van

Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image analysis.

Medical Image Analysis, 42:60–88, dec 2017. doi: 10.1016/j.media.2017.07.005.

[52] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth

IEEE International Conference on Data Mining. IEEE, dec 2008. doi: 10.1109/

icdm.2008.17.

[53] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2015.

59

[54] Markus M. Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof:

Identifying density-based local outliers. volume 29, pages 93–104, 06 2000. doi:

10.1145/342009.335388.

[55] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve

neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[56] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(Nov):2579–2605, 2008.

[57] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly de-

tection in crowded scenes. In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. IEEE, jun 2010. doi: 10.1109/cvpr.2010.5539872.

[58] Stefania Matteoli, Marco Diani, and Giovanni Corsini. A tutorial overview of anomaly

detection in hyperspectral images. IEEE Aerospace and Electronic Systems Magazine,

25(7):5–28, jul 2010. doi: 10.1109/maes.2010.5546306.

[59] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, dec 1943.

doi: 10.1007/bf02478259.

[60] Goeffrey J McLachlan and GJ Mclachlan. Mahalanobis distance. Resonance, 4(06),

1999.

[61] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the

landscape of two-layer neural networks. Proceedings of the National Academy of

Sciences, 115(33):E7665–E7671, jul 2018. doi: 10.1073/pnas.1806579115.

[62] Marvin Minsky and Seymour Papert. An introduction to computational geometry.

Cambridge tiass., HIT, 1969.

60

[63] Perry Moerland and Emile Fiesler. Neural network adaptations to hardware imple-

mentations. Technical report, IDIAP, 1997.

[64] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. Deep

learning for IoT big data and streaming analytics: A survey. IEEE Communications

Surveys & Tutorials, 20(4):2923–2960, 2018. doi: 10.1109/comst.2018.2844341.

[65] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[66] R Okuta, Y Unno, D Nishino, S Hido, and C Loomis. Cupy: A numpy-compatible

library for nvidia gpu calculations. In of Workshop on Machine Learning Systems

(LearningSys) in The Thirty-first Annual Conference on Neural Information Pro-

cessing Systems (NIPS), 2017.

[67] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Computer Networks, 51(12):3448–

3470, aug 2007. doi: 10.1016/j.comnet.2007.02.001.

[68] Maurice Peemen, Bart Mesman, and Henk Corporaal. Efficiency optimization of

trainable feature extractors for a consumer platform. In International Conference on

Advanced Concepts for Intelligent Vision Systems, pages 293–304. Springer, 2011.

[69] Huan-Kai Peng and Radu Marculescu. Multi-scale compositionality: Identifying the

compositional structures of social dynamics using deep learning. PLOS ONE, 10(4):

e0118309, apr 2015. doi: 10.1371/journal.pone.0118309.

[70] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

61

[71] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation func-

tions.

[72] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image

classification: A comprehensive review. Neural computation, 29(9):2352–2449, 2017.

[73] Felix Rembold, Clement Atzberger, Igor Savin, and Oscar Rojas. Using low resolution

satellite imagery for yield prediction and yield anomaly detection. Remote Sensing,

5(4):1704–1733, apr 2013. doi: 10.3390/rs5041704.

[74] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, 22(3):400–407, sep 1951. doi: 10.1214/aoms/1177729586.

[75] Thomas W. Rogers, Nicolas Jaccard, Edward J. Morton, and Lewis D. Griffin. Au-

tomated x-ray image analysis for cargo security: Critical review and future promise.

Journal of X-ray science and technology, 25 1:33–56, 2017.

[76] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, 1958. doi: 10.1037/

h0042519.

[77] Sebastian Ruder. An overview of gradient descent optimization algorithms.

[78] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed

Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class

classification. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 4393–4402, Stockholmsmässan, Stockholm Sweden, 10–15

Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/ruff18a.html.

62

[79] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-

resentations by back-propagating errors. Nature, 323(6088):533–536, oct 1986. doi:

10.1038/323533a0.

[80] Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh,

and Andrew Y. Ng. On random weights and unsupervised feature learning. In

Proceedings of the 28th International Conference on International Conference on

Machine Learning, ICML’11, pages 1089–1096, USA, 2011. Omnipress. ISBN 978-1-

4503-0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.3104619.

[81] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and

John C Platt. Support vector method for novelty detection. In Advances in neural

information processing systems, pages 582–588, 2000.

[82] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C.

Williamson. Estimating the support of a high-dimensional distribution. Neural Com-

putation, 13(7):1443–1471, jul 2001. doi: 10.1162/089976601750264965.

[83] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep learning

approach to network intrusion detection. IEEE Transactions on Emerging Topics in

Computational Intelligence, 2(1):41–50, feb 2018. doi: 10.1109/tetci.2017.2772792.

[84] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition.

[85] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training

error guarantees for multilayer neural networks.

[86] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.

Striving for simplicity: The all convolutional net.

63

[87] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res., 15:1929–1958, 2014.

[88] Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for anomaly

detection. J. Mach. Learn. Res., 6:211–232, December 2005. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=1046920.1058109.

[89] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.

[90] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),

2015. URL http://arxiv.org/abs/1409.4842.

[91] Yuliya Tarabalka, Trym Vegard Haavardsholm, Ingebjørg K̊asen, and Torbjørn

Skauli. Real-time anomaly detection in hyperspectral images using multivariate nor-

mal mixture models and GPU processing. Journal of Real-Time Image Processing,

4(3):287–300, dec 2008. doi: 10.1007/s11554-008-0105-x.

[92] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[93] Yung Liang Tong. The multivariate normal distribution. Springer Science & Business

Media, 2012.

[94] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson.

Deep learning for unsupervised insider threat detection in structured cybersecurity

data streams. 2017.

64

[95] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,

and Ke Li. AIˆ2: Training a big data machine to defend. In 2016 IEEE 2nd Interna-

tional Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Interna-

tional Conference on High Performance and Smart Computing (HPSC), and IEEE

International Conference on Intelligent Data and Security (IDS). IEEE, apr 2016.

doi: 10.1109/bigdatasecurity-hpsc-ids.2016.79.

[96] H. Vogel and D. Haller. Luggage and shipped goods. European Journal of Radiology,

63(2):242–253, aug 2007. doi: 10.1016/j.ejrad.2007.03.040.

[97] Shui-Hua Wang, Khan Muhammad, Jin Hong, Arun Kumar Sangaiah, and Yu-

Dong Zhang. Alcoholism identification via convolutional neural network based on

parametric relu, dropout, and batch normalization. Neural Computing and Ap-

plications, Dec 2018. ISSN 1433-3058. doi: 10.1007/s00521-018-3924-0. URL

https://doi.org/10.1007/s00521-018-3924-0.

[98] Eric W. Weisstein. Wolfram imageidentify net v1. From MathWorld—A

Wolfram Web Resource. URL \url{https://resources.wolframcloud.com/

NeuralNetRepository/resources/Wolfram-ImageIdentify-Net-V1}. Last vis-

ited on 1/4/2019.

[99] K. Wells and D.A. Bradley. A review of x-ray explosives detection techniques for

checked baggage. Applied Radiation and Isotopes, 70(8):1729–1746, aug 2012. doi:

10.1016/j.apradiso.2012.01.011.

[100] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and Intelligent Laboratory Systems, 2(1-3):37–52, aug 1987. doi:

10.1016/0169-7439(87)80084-9.

65

[101] Ruobing Wu, Baoyuan Wang, Wenping Wang, and Yizhou Yu. Harvesting dis-

criminative meta objects with deep CNN features for scene classification. In 2015

IEEE International Conference on Computer Vision (ICCV). IEEE, dec 2015. doi:

10.1109/iccv.2015.152.

[102] Kwang Eui Yoo and Youn Chul Choi. Analytic hierarchy process approach for

identifying relative importance of factors to improve passenger security checks at

airports. Journal of Air Transport Management, 12(3):135–142, may 2006. doi:

10.1016/j.jairtraman.2005.11.006.

[103] Yufeng Zheng and Adel Elmaghraby. A vehicle threat detection system using cor-

relation analysis and synthesized x-ray images. In J. Thomas Broach and Jason C.

Isaacs, editors, Detection and Sensing of Mines, Explosive Objects, and Obscured

Targets XVIII. SPIE, jun 2013. doi: 10.1117/12.2016646.

66

Appendix A

Supplementing Results

Figure A.1 gives the intermediate result when using the right value of ϵ for our baseline

methods.

Figure A.1: Impact of tunning epsilons for baseline

Figure A.2 showed our baseline result in 10 runs. We can see our baseline AD perfor-

mance is closed to 50chance.

67

Figure A.2: Results of baseline for SVHN AD over 10 runs

Figure A.3: Representation distribution for SVHN from CNNs trained on MNIST.

Throughout our training process, we plot how learned representation from MNIST are

distributed with varied pooling layers. In Figure A.4

It is clear that cluster of each digits are becoming further away as we increase the

pooling layer size this means, final pooling layer size for CNNs, in general, are positively

68

correlations to anomaly detection performance when transfer learning is applicable.

When trying to visualize digit representation’s distribution with PCA given in Figure

A.5, we notice the data for class 1 and 9 in space spanned by principal components are

embedded into the cluster, but graph from t-SNE is possible to disentangle these data,

therefore we decide to include graph only from t-SNE to main body.

69

(a) Final pooling layer size: 8

(b) Final pooling layer size: 128

(c) Final pooling layer size: 256

(d) Final pooling layer size: 512

Figure A.4: Visualization of how CNNs learn representations. Dataset: MNIST

70

(a) Anomaly digit: 1

(b) anomaly digit: 9

(c) anomaly digit: 2

Figure A.5: PCA plots for anomaly digit: 1 9 and 2.

71

